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A study is made of a type of composite material that is widely used in practical 
applications - a composite with fibers of constant cross section arranged paral- 
lel to one another in the matrix. The effective thermal conductivities of 
transversely isotropic composites is estimated on the basis of dual variational 
principles from thermostatics. Certain geometric models that are of practical 
interest are examined and refined estimates of their effective conductivities 
are obtained. Due to mathematical equivalence, the results obtained can also 
be used for effective electrical conductivity, the effective diffusion coeffic- 
ient, effective permittivity, and effective permeability. 

i. Formulation of the Problem. We will examine a two-dimensional problem of heat con- 
duction in the plane of isotropy of a composite with a Cartesian coordinate system {xl, x2}. 
A representative element of the heterogeneous medium, confined tothe volume V, consists of 
N continuous, transversely isotropic phases. Each phase occupies the multiply connected 
region V~ c V and in the plane of isotropy has a transverse thermal conductivity ~, = = 
i, N. We will designate the area of V= as v~. Without loss of generality, we can assume 
that the area of V = i. 

The equation of thermostatics for this problem has the form 

q ~  = o, (1)  

where Qi = -AT,i, k = k~ in V~o 

Conditions of continuity of the heat flux Qini and temperature T are satisfied at the 
phase boundary. Here, n i represents components of the unit normal to the line of the bound- 
ary. The comma in front of the subscript i denotes differentiation with respect to x i. 
Here and below, the English-letter indices take values of 1 and 2, while summation from 1 
to 2 is carried out over repeating indices of this kind. 

Let us determine the value of Qi, 
mula: 

averaged over the region V, from the following for- 

< Q~ > = ( Q~x (2) 

If the relations <Qi > = -%c<T ~> are always established, then the quantity ~c is termed 
the effectlve transverse thermal conductivity of an isotropic composite. 

We use ~(~ = i, N) to designate the coefficients of the phases in the direction per- 
pendicular to the plane of isotropy. Then the effective longitudinal thermal conductivity 
of the composite Xc is found from the familiar formula [i] 

Here and below, the letters under the summation sign run through integers from 1 to N. 

We are left with the problem of determining ~c- Existing mathematical methods of find- 
ing effective thermal conductivity and the results that are obtained are well documented in 
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[1-7]. In these studies, the variational approach [3, 4] was developed to obtain estimates 
of %c" The investigators constructed general estimates that depend on the coefficients 
characterizing the phase geometry of the composite. Obtained in particular from these co- 
efficients were the Hashin-Shtrikman estimates for the general case. Explicit values of Xc 
were obtained for N-phase composites with fibers of circular cross section. 

2, Derivation of Estimates. If we assign the heat flux 

Qinilov = Q~n~, Q~ = const, 
at the boundary of the representative element, then the field T satisfying Eq. 
ary condition (3) is the solution of the following variational problem: 

( k T---2-- '~ ~ ) '~ I = i ~  I (V), I = S + Q~ d~x. 
- -  T V 

Convolut ing (3) wi th  x k and i n t e g r a t i n g  over %V, we ob ta in  <Qk > = Q~. 
and (4) t h a t  

I - Q~Q? (5) 
- 2~c 

We introduce a certain positive number X 0 and construct a new functional 

(3) 

(1) and bound- 

(4) 

It follows from (2) 

(6) 

where 

($O(q) = ~ o~ ~ Z - ~ O  qi q? const in V~; 

U(T)=  ~1 ~(;k~--= s >~)(T,-- <Ti, >r 

The symbol < �9 > denotes the average over V~: 

< T i > ~ _  1 ,t'T,i d2x" 
V ck V c~ 

If the following equalities exist: 

then it can be shown that Iq = I. 

q~ = (ka-- ko) < T ~ > ~, 

We will examine the problem 

lq = inf lq (T). 
- -  T 

(7) 

(8) 

It is clear that I <_ lq if (7) occurs at the point of the extremum of the function lq(T). 
The substitution of variables 

T = - -  1-J-(Q~+<qi>)xi% "T', q i= <qi>-Sq/ (9) 
ko 

transforms problem (8) to the form 

Iq ----- inf [Jr (T') -6 U (T')] -- r (q) --  ~ (QO @ < q~ ) )(QO + < q, ) ), (10) 
- -  T e 

We will examine the region of integration of the functional Jv(T') for all spaces R 2 and we 
obtain the new functional 

with the restrictions 

s 
~2 

q'i =0 in R2NV, T(~ =0( i--~] ) for' I~ -+oo, (ii) 
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- 2 It is evident that Jv(T') < where x is the position vector of the points; 171 = Vx~ q-x2- 
J~(T'). We seek the minimum of the functional 

,[~ = inf J~(T ' ) .  
- -  T , e ( l [  ) 

Here, inf means that the lower bound of the functional J~ must be sought among the functions 
T' that satisfy restriction (ii). The Euler equation for T' is as follows: 

(~oTi~ + ql),~ = o. (12)  

The solution of (12) with restrictions (ii) has the form 

T' (~) = 1 q~ ~,,%, (13)  

where  ~ a ( x )  i s  t h e  a t t r a c t i o n  p o t e n t i a l  o f  m a s s e s  f i l l i n g  V a w i t h  a u n i t  d e n s i t y :  

v~ 2g 

Here and below, we choose V to be a circle whose center coincides with the origin of coordi- 
nate system {xi}. Since the phases are distributed uniformly and are isotropic in the rep- 
resentative element of the heterogeneous medium, then [2] 

where 6im is the Kronecker symbol. 
calculate J~: 

j ~ _  1 j qiT, i d 2 x = _ _ _ _  
- 2 v 

S i n c e  J v ( T ' )  <- J = ( T ' ) ,  s u b s t i t u t i o n  o f  J ~ ( T ' )  

1 
--~ 5imSa~, (14) 

With allowance for the last equality and (13), we can 

4k~o 
(<q~q~>--(qi> <qi>) .  

in place of Jv(T') in (I0) gives 

1 ( Q O + < q ~ > ) ( Q O + < q ~ > )  

2~o 

_ _ _  (Qo + < q~ > )(QO + < q~ > ) = 

!q  "~< inf [J~ (T') -[- U (T')] - -  ~ (q) - -  - -  
T" 

1 
<~ J~ + us (q) - ~ (q) 

- 2~o 

_[ 1 (<q~q~>_<q~) < q z } ) - - ~ ( q ) - -  

L 4~o 

I (QO. + < q~ > )(Q? + < q~ > )] + Qj (q). 
2~0 ] 05) 

Here, Uj(q) is the value of the functional U(T') at the extremum point of the functional 
J~(T' ). 

Inequality (15) is satisfied for any value of qi- We will examine values of qi which 
are stationary points of the quadratic form in the square brackets in (15): 

_Q0 
q~ ---- (1 q- M12)[1/2 + )~o/(k~-- ko)] ' 

M ---- M (~'o) ---- Z v~ 
I/2 -~ ~o/(X= -- ).o) 

It is easily proven that (7) follows from (16), (14), (13), and (9). 
tion of (16) into (15), we obtain 

[ ~ I q ~  ---~-o -~ ~o 1 +M/2  , -{-Us, 
where 

(16) 

Thus, after substitu- 

Us = ~ (1 -~ M/2> ~ ~,.~- %'~' 
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~ - - M i [ -  1 \ 
,~,v~ 1 ~___0 ) i  1 ~____2_~ ~ - -  M ] 

X t ~ '  rni~, mi - -  dZx .  
v~z ,  2 , 

X 

The quantity #~n is a symmetric tensor of the second order with respect to the indices m and 
n. By virtue of the uniform and isotropic distribution of the phases in the representative 
element, this tensor is also isotropic, i.e., 

q~m~ -- C~6,~, C= = const. 

It is easily shown that C~ = (i/2)#(~/mm) and C~ -> O. 
we arrive at the inequality 

~ c ~ o  [1 M 
1 + M/2 

C~ = ~ - 1 2~ o 

~'~ , - ~  q ~ - -  ~o 

Summing the results obtained here, 

(1 + M/2) z ~ C~ ( 17 ) 

- - M  1 ~0 - - M  X 

- 2  + ~ --  ~0 

4 2 v= 

We take X 0 > X~, V~ = i, N. Discarding the last term in the square brackets in (17) as a 
positive number (which thus strengthens the inequality) and making X0 approach max {X~}, we 
obtain the Hashin-Shtrikman upper bound. 

A refined estimate can be obtained if we know the values of C~ 7, which are dependent on 
the phase geometry of the composite. We then choose X0 such that the last term in the square 
brackets in (17) vanishes: 

Equations (17) and (19) give 

E ()'~ -- )~o) C~ = O. (19) 
o~ 

X~ ~1%o [ 1 - M ]--1 2 + M ( ~ 0  ) 
1 + M/2- = ~o" 2 - -  M(~o) 

The p r o c e s s  o f  d e r i v i n g  t h e  lower  bound i s  s i m i l a r .  I f  we r e p l a c e  c o n d i t i o n s  (3)  by 
a s s i g n e d  boundary  v a l u e s  o f  t e m p e r a t u r e  

Tiov = T~ xl, TO = const, 

t h e n  t h e  f l u x  Qi becomes t h e  s o l u t i o n  o f  t h e  f o l l o w i n g  v a r i a t i o n a l  p rob lem:  

= = T~ Tz. 
- Qie(1) ~ \  2~ ] 2 

Using the method being proposed here, we arrive at the inequality 

M 
gc>/)~g I+ l - -M~2  

where M = M(X 0) is determined from (16). 
equat ion: 

1 1 

and we obtain a simple expression for the lower bound 

( l - - M / 2 )  z ~ ~ ~ 0  ' 

We choose X~ as the solution of the following 

= 0 ,  

(20)  

(21)  

(22)  

(23)  

2 + M (X~) 
2 - -  M (K~) 

(24)  
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the center of circle S I. 
potential theory that 

3. Geometric Models. In order to obtain estimates (20), (24), it is necessary to de- 
termine X 0 and X~ from Eqs. (19) and (23). This is equivalent to calculating C~Y from (18). 

We will examine an N-phase composite consisting of a continuous matrix and inclusions in the 
form of cylinders of circular cross section. Each cylinder is made of one material and is 
surrounded by a hollow cylinder made of the matrix material. The ratio of the volumes of 
the cylinders is constant. For greater clarity, first we choose a two-phase composite. 

Let the composite consist of the matrix phase V M and the inclusion phase VI, having 
thermal conductivities X M and hi, respectively. Each circle S I belonging to V I is enclosed 
within a larger circle SM, the region SM\S I of the latter circle being filled with the matrix 
material. We will construct a cartesian coordinate system {xl} whose origin coincides with 

Then we have the relation x~ = Aijx j + const. It is known from 

- -7--  -6 const in S~, 
I GdZy= a a (25 )  

sz !n V x~ x~ + const in VNSI,  a - -  is the radius of SI 
2 

j" GdZ9 - -  -6 const in V. 
x~xz 

v 4 

Since the phases are distributed uniformly in V and since the dimensions of the circles S I 
and S M are small compared to V, we can assume that 

j~ Gd~y = v ~ fj Gd~!y, 
v~ \ si v \  s~ 

x* E Sz, 

S Gd2g = ~ Gd2g, xi~SM. u M 
VM\ s~_ v \  s,~,z 

(26)  

It can be deduced from potential theory that Eqs. (26) are exact for the polydisperse model 
[2]. In the more general case, thez can be used as a first approximation. We can use (25- 
26) to calculate the potentials ~I(x), ~M(~) everywhere in V. For example, for xi6S1~V1 

v~ ~ vr \ st sl v \  s t 

(xx x;x: 1 x; x; + v~ 4 -6 const, 
4 4 

, A~Ahj ( 6u AhiAk] ) 6i] (Since ' 
~P,ii = 2 -6 v I 2 2 , = 2 

= - -  1 
C~ z 1 l (~i/q~(i/dZz- 2 ~ ~ cg~qq~(qdZx = 

2 f} sz cv l Sl 

Similarly, we obtain 

Ah,Akj = 6u), 

o I 

4 
(27)  

c# cf o, cZ=-c ? (28) 
---- = 2 , ~M --  4 ~ 2 

I t  f o l l o w s  f rom ( 1 8 ) ,  ( 1 9 ) ,  ( 2 3 ) ,  and ( 2 7 - 2 8 )  t h a t  X0 = h~ = X M. Thus ,  t h e  l ower  and u p p e r  
bounds  o f  ( 2 0 ) ,  (24)  c o i n c i d e :  

~i ( 1 + vl) + ~ v M 

L~ = k~ %I vM -6 %M (1 -6 vl) 

Let us return to the general case of a N-phase matrix with circular fibers. Since the 
phases are distributed uniformly in V, analogously to (26) we taken the following equalities 
as a first approximation: 

f x, cS V, 
v ~ \ s  VNS 

C ~v=v~ i, N - - l ;  j ~ , ? = l ,  A r (where  where  S i s  any  i n c l u s i o n .  The c a l c u l a t i o n  g i v e s  ~ ~_ 6=136=v, ~ =  

V N denotes the matrix phase with the thermal conductivity XM). It follows from (18), (19), 
(23) that X0 = X~ = X M. Thus, in this case as well we obtain 
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TABLE 1 

kc 0,1 0,3 0,5 0,7 0,9 

u 
~p 

L 

k L 

8,487 

7,182 

6,669 .. 

6,586 

6,058 

5,001 

3,945 

3,681 

4,194 

3,659 

2,733 

2,385 

2,717 

2,535 

l, 999 

1,651 

1,518 

1,499 

1,392 

1,178 

2 + M (~M) ;k~ = kM 
2 -- M (~M) 

Let us proceed to the case of a two-phase composite with lamellar fibers. 

the same reasoning as above, we obtain: 

U I V M V I V 2 

4 ' 4 ' 
c~l  vI  

= - U + - -  

- = = 

4 ' 

_ c ,  ' "  = c f "  = _ _  

2 UM C~M v~vl 
4 ~- 4 ' Xo = ~IDM @ k~uv I, 

Following 

2 + M (k0) 2 -~ M (k0) 

2 - M (ko) 2 - -  M (~0) 

Ex.amp! e .  L e t  us  exam i ne  a t w o - p h a s e  c o m p o s i t e  w i t h  ~z and X2 e q u a l  t o  1 and 10. The 
r e s u l t s  o f  c a l c u l a t i o n  o f  t h e  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t i e s  a r e  shown in  T a b l e  1, where  
kL, ~U a r e  t h e  l ower  and u p p e r  bounds  o f  t h e  H a s h i n - S h t r i k m a n  s o l u t i o n  ( t h e y  c o i n c i d e  w i t h  
k e f o r  a p o l y d i s p e r s e  m o d e l ,  when t h e  m a t r i x  h a s  t h e  l o w e s t  and h i g h e s t  v a l u e s  o f  ~, r e -  
s p e c t i v e l y ) ;  v i s  t h e  vo lume  f r a c t i o n  o f  t h e  p h a s e  h a v i n g  t h e  l o w e s t  ~. 
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